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We start with the stance that it is important for educators to understand students’ language 
repertoires in relation to characteristically mathematical conceptualizations and processes. The data 
in our study of grade 3 to 11 students’ language repertoires for conjecture led our attention to 
competing discourses in the classroom and the consideration that the mathematical language 
repertoires are also repertoires for friendship, competition, etc. In this paper we use a framework for 
identifying authority structures in mathematics classrooms to focus on formative communication 
acts, and then we consider how each act might serve a purpose for positioning the students involved 
in terms of each discourse that we identify as in play. 
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Introduction 
Because mathematics is mediated through and by language, it is important for educators to 

understand students’ language repertoires for mathematical conceptualizations and processes. As part 
of a large-scale research project focused on identifying specificities of students’ language repertoires, 
especially in contexts of mathematical investigation, we sought to identify connections between their 
ways of talking about conjecture and what they think their expressions mean. 

In this paper, we use one episode from our data to problematize our fundamental research 
question. Positioning theory helps us understand the way students’ communication acts connect to a 
variety of discourses, including mathematics. There are many discourses enacted in any classroom 
context. In addition to mathematics, we found mischief, romance, play, hunger, and more at work. In 
short, we cannot understand students’ communication about mathematical processes without 
understanding that these acts are also part of their repertoires for the other discourses in play. We 
argue that the connections among the discourses indexed by students’ communications may give us 
insight into what mathematics is for these students. 

Positioning and Discourses 
Position metaphors are often used to illustrate the way people relate to each other. Van 

Langenhove and Harré (1999) have described positioning as the ways in which people use action and 
speech to arrange social structures. According to this theorization, in any interaction, the participants 
envision known storylines to help them interpret what is happening. These storylines may be 
conscious or not. They are contested explicitly or implicitly. A powerful aspect of this theory is its 
radical focus on the immanent, its rejection of the transcendent. In other words, it considers real only 
that which is present in the interaction and rejects the power of exterior forces. 

In an analysis of the way this theory was taken up in mathematics education research, Wagner & 
Herbel-Eisenmann (2009) noted that exterior forces, such as the discipline of mathematics, may be 
myths, but they can be taken as real in classroom or other interactions because teachers and others 
may be viewed as representatives of these exterior forces. The classical triad developed by the 
progenitors of the theory (e.g., van Langenhove & Harré, 1999, p. 18), which connected a speech act 
to a storyline and a positioning, was reconfigured by Herbel-Eisenmann, Wagner, Johnson, Suh, & 
Figueras (2015, p. 194), as shown in Figure 1. 
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Figure 1.	Illustrating positioning. (Herbel-Eisenmann et al., 2015, p. 194). 

They layered storylines to emphasize positioning theory’s claim that multiple storylines may co-
exist in an interaction. And they used arrows to highlight the dynamic interaction between a 
communication act and the exterior storyline—a communication act initiates, maintains, and 
negotiates positioning within a storyline, and this positioning formats communication acts.  For us, 
this recursive relationship is reminiscent of Foucault’s (1982) description of discourses—“practices 
that systematically form the objects of which they speak” (p. 52). Thus we will use the term 
discourse instead of storyline. 

For our analysis in this paper we elaborate the diagram into three dimensions (Figure 2).  
 

 
Figure 2. Extending the positioning model into three dimensions. 

We are motivated by our data to avoid foregrounding any one discourse. Thus we position a range of 
discourses in relation to a communication act. Each discourse may be seen as a slice of the torus 
though the lines of demarcation between discourses would not be so clear as they are in the diagram; 
the various discourses are interconnected. A communication act appears as a cylinder passing 
through the torus. The cross section cut of this 3D figure would appear about the same as Figure 1. 
The communication act (a slice of the cylinder, which would appear as a rectangle in cross-section) 
interacts with a discourse (a slice of the torus, which would appear as an ellipse). The arrows show 
how the communication act constructs the discourse while the discourse constructs the 
communication act. 

Connecting communication acts to discourses 
Because positioning theory focuses on people’s rights and obligations in interactions, we choose 

a conceptual frame developed in mathematics education that makes distinctions among such 
structures. Working from a large-scale quantitative analysis of the communication in mathematics 
classrooms, Wagner & Herbel-Eisenmann (2014) distinguished among four authority relationships. 
To identify personal authority, one looks for “evidence that someone is following the wishes of 
another for no explicitly given reason” (p. 875). Linguistic clues include the presence of I and you in 
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the same sentence, exclusive imperatives, closed questions, and choral response. To identify 
discourse as authority, one looks for “evidence that certain actions must be done where no 
person/people are identified as demanding this” (p. 875). The strongest linguistic clue is the presence 
of modal verbs that suggest necessity—e.g., have to, need to, must. To identify discursive 
inevitability, one looks for “evidence that people speak as though they know what will happen 
without giving reasons why they know” (p. 875). The modal verb going to is a strong indicator of 
this structure. Finally, to identify personal latitude, one looks for “evidence that people are aware 
they or others are making choices” (p. 875). Linguistic indicators include open questions, inclusive 
imperatives, and indicators of someone changing their mind—for example, I was going to, could 
have.  

We emphasize that we identify these authority relationships on the basis of particular 
communication acts, and try to avoid reading intention. For example, a student may say or do 
something because s/he thinks that is what the teacher wants, but we look for communication acts 
that explicitly indicate this authority structure. The intention may be significant, but our attention to 
language repertoires compels us to look for the communication acts that underlie or motivate this 
intention. We take the stance that the sense that a student is doing what a teacher wants comes from 
one or a series of communication acts that set up this discourse.  

In this paper we work through a transcript identifying authority relationships. We focus on 
instances where these relationships appear to change and on aspects that are resilient to change. At 
the same time we identify exterior discourses that are referenced (We acknowledge that there are 
further discourses at play that are never explicitly addressed in the transcript, or that are addressed in 
a way that we do not recognize). In addition to the mathematics, we identified the following 
discourses in this particular group’s work: school work, hobby/game playing, our research agenda, 
competitiveness, romance, affect in identity, clothing, friendship, body image, and physical/material 
resources. We considered referring to these other discourses as “distractions” but realized that this 
word is subjective; yes, romance may distract from mathematics, but mathematics may also distract 
from romance. Thus we think of the whole set of discourses, including mathematics, as competing 
and intertwined discourses. In our analysis, for each significant communication act, we ask how the 
specificities of that act might serve the person’s interests within the various discourses. How is 
mathematics positioned? How does this act position the friendships? How does it project body 
images? etc. 

We chose this particular group of three grade 10 students (approximately 15-years-old) because 
they made progress mathematically though their teacher did not have high hopes for them working 
well together. They were given a page with the following task and some images of cubes and cut up 
cubes (e.g., Figure 3): “A cube was painted red, and then cut into smaller cubes, 3 x 3 x 3. How many 
of the small cubes have no red faces? How many have 1 red face? 2 red faces? 3 red faces? 4 red 
faces? 5? 6? How about a cube cut into 4 x 4 x 4? Or 5 x 5 x 5? Or 10 x 10 x 10? Or n x n x n?” They 
were also given a set of twenty-seven solid white cubes snapped together in a 3 x 3 x 3 configuration. 
It was possible for students to pull the set apart and reorganize the cubes but they still had to 
visualize what sides would be painted and what would not. 
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Figure 3. Cube task images. 

Applying the Framework 
The task involved working in a group and working mathematically with an object that could only 

be visualized. This kind of investigation work invites (perhaps ‘requires’) students to decide how 
they will organize their investigation and themselves while doing the investigation. Steven set the 
tone:  

3 Steven: All right boys, well, let’s get to work. “A cube was painted red and cut into smaller 
cubes, 3 by 3 by 3…” 

4 Peter: I don’t have one. 
5 Steven: You don’t have a sheet? [turning to a researcher…] Um, excuse me? He don’t have a 

sheet. [turning back to the group] Okay. 

This exchange establishes the positioning in the group. Steven’s “let’s get to work” (turn 3) 
suggests personal authority, similar to the way a teacher might demand work from students; he told 
the others what to do and did not tell them why it would be a good idea or why he had the authority 
to do so. First we consider how this positions mathematics. It appears that mathematics comprises 
performance at the behest of someone in authority, performance of certain kinds of procedures or 
processes (involving shape and number in this case, and probably more generally). This authority 
structure does not align with conventional views of mathematics being a bastion of reason. Steven 
also indexes the friendship discourse with “All right boys” (turn 3), and positions himself as a leader 
in this group of friends (however, we were told by the teacher that these boys were not friends). 
Connecting these discourses, mathematics is positioned as something one can use to establish 
authority in friendship, and vice-versa—friendship can be used to establish authority in mathematics. 
The other discourses we identified in this episode were not yet explicit. We pick up the interaction 
when the group begins to engage with the task: 

12  Steven: twenty-seven have no red on them.  Oh wait, no, that’s wrong.  [he holds the large 
cube and points at small cubes when counting] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … oh, fuck. 

13 Doug:  No look… 
14 Steven: It’s like, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, … 
15  Doug: All this would, here, here, and here [pointing]. 
16 Steven: Just the outer layer. Just the outsides. 
17 Doug: Yeah all the other. 

Steven was in control of the cubes while Doug and Peter watched him. Though it could appear 
that they were not paying attention, we know they were paying attention because of what they said 
later. In turns 12 to 17, there are no expressions suggesting personal authority, discourse as authority, 
or personal latitude. By deduction, the dialogue might suggest discursive inevitability, but we ask 
whether it fits the description of this category. There are no instances of going to, which is the 
marker identified by Wagner & Herbel-Eisenmann (2014). However, the students are working as 
though there is a correct answer that they will identify once they have worked enough at the task 
(which aligns with the description of this category). Linguistically, this is achieved in a number of 
ways. Steven counts outside of sentence structure (turns 12 and 14). This suggests that there is only 
one way to count the objects; no one would count them differently. If they had thought there are 
different ways of counting, they would qualify their counting with, for example, “if we count [this 
way] we would get […].” Furthermore, Doug’s expression, “this would” (turn 15) suggests that he 
knows what will happen. 

We now ask how these communication acts position the students with the discourses we have 
identified in the entire session. First, because of the orientation we bring to the research (as 
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mathematics educators) we are attentive to the expression “this would” (turn 15) because it is a way 
of indicating a generalization. The expression will appear multiple times later in the transcript as part 
of a clearer generalization. In the case above, the sentence is incomplete so it is difficult to see 
Doug’s generalization. Second, we found no linguistic references to other discourses. There were 
markers of some of them throughout the interaction, however; Doug’s shirt indexed his hobby, the 
clothing of all three of them suggested that they identify as male, their proximity and body language 
could relate to friendship discourses, their physical context connected them to school discourses, our 
presence in the room and the recording devices potentially reminded them of the research discourse, 
etc. Nevertheless, the grammar of their interaction, specifically the ways their language suggested 
inevitability within mathematics, eclipsed the other discourses that potentially could draw their 
intention. Indeed, their attention was drawn to the recording devices, a girl in another group, and 
other “distractions” at times in this interaction. This idea of inevitability suggests that there is one 
way of counting, for example, but it also draws attention away from other discourses—it seemed to 
be inevitable that they would count those blocks in the way presented in the task. As the conversation 
continued, there is a change away from discursive inevitability: 

18 Steven: I wonder if you take it apart?  Like this?  [As he takes the cubes apart they do not 
separate as he intended.] Fuck.  All these, the outer, if you look on the inside… these two 
sides don’t, these two sides don’t, take that apart, these two don’t… 

19 Doug: Yeah, but also… 
20 Peter: Hey Steven, can I see the cube for a sec? 
21 Steven: One sec. 
22 Peter: Okay. 
23 Doug: Once you take it apart you’re saying all these would have red, but what he’s asking is 

that if you take an individual cube, so this was right here right, and like 
24 Steven: Oh. 
25 Doug: This part would have red, this part would have red, this part would have red on it, so 

those three sides… er… yeah, three sides would have red.   
26 Steven: So how many of them wouldn’t? 
27 Doug: Only three cubes… one cube 
28 Steven: If this whole thing was painted red, how many of these would have no—that’s what 

he’s asking, how many of these?  Okay, so it would go like this, one, two, oh yeah, so it 
would be these sides right?  It would be this side, this side, this side, this side, and this side.  
So yeah, it would be like, how many of them?  It would be this… no, this side wouldn’t 
have… 

29 Doug: No, that side wouldn’t 
30 Steven: All right, this side wouldn’t and this side wouldn’t. 

Starting in turn 18, Steven’s “I wonder” demonstrated an awareness that he can think about the 
cube structure in different ways. This suggests personal latitude because he expressed awareness of 
his choice about ways of seeing. This change in authority structure seems to be contagious. Doug’s 
response “Yeah, but also” (turn 19) references personal latitude too. He agreed with Steven and 
identified that something could be added. And Peter then asked for the cube (line 20), indicating 
awareness that there is choice about who holds the cube. Steven’s response in line 21 then indicates 
awareness that he can choose whether to honour Peter’s request, and then Peter complied, likewise 
acknowledging that he can agree or disagree with Steven’s request for a little more time. This led to 
the beginning of a conjecture (though not clearly worded) from Steven: “If you take…” (turn 23).  
Turns 24 to 30 are replete with the word would, which we indicated earlier as a marker of discursive 
inevitability. However, in this case the word has different meaning, specifically a mathematical 
justification, because it is paired with the subordinate conjunction if.  
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This flurry of personal latitude may be an example of interlocutors picking up discourse patterns 
from each other. Applied linguistics literature has identified this phenomenon in terms of people 
picking up each other’s words, which is a little different than picking up an authority structure. 
Positioning theory discusses the possibility of picking up structure from others, as the theory 
describes (using the language of first-order, second-order, and third-order positioning) how people 
follow or resist positioning established by others. Nevertheless, as we ask what happened to switch 
the dialogue from a stream of discursive inevitability to this flurry of personal latitude, we note the 
possibility that the authority structure was part of the students’ repertoires the whole time just waiting 
to be triggered. It appeared to be triggered by Steven’s insight, but one could say this too was 
triggered by the task inviting a certain kind of thinking. It could also have been triggered by certain 
classroom norms that honour this kind of interaction. There are lots of possibilities. 

Steven’s “If you take” (turn 23) is the beginning of a generalization in which he imagined 
stripping the cube of the outside layer of small cubes, which would leave one bare cube in the 
middle. The conjunction if is strongly associated with conjectures and generalizations throughout the 
interaction of this group especially in its pairing with would: “If …, then … would…” though the 
word then tended to be omitted. This and the other ways of expressing the students’ choices to see 
the cube in different ways supports the development of their mathematical insights, and thus 
constructs mathematics as a discipline in which people develop insight by making choices about how 
to see things. These communication acts that index personal latitude can make similar impacts on the 
other discourses though it is not straightforward to map them because this part of the interaction was 
focused on mathematics. Nevertheless, the former hierarchy within the friendship discourse, in which 
Steven had the role of telling his “boys” what to do, was opened up to allow for the others to exercise 
agency. The finite physical resources were a factor in this negotiation of the object of attention 
though it is clear from their dialogue to come that both Doug and Peter were manipulating the cube 
in their imagination as they watched Steven manipulate the physical cube.  

Discussion 
Our research interest was initially on student language repertoires for mathematics. Our data has 

led us to connect this to some of our previous work that recognized and identified a range of 
discourses at work in mathematics classroom contexts (c.f. Andersson, 2011). In reflection we return 
to the repertoires. We remember that whatever repertoires people have for mathematical thinking and 
action, these repertoires serve purposes in other discourses as well. In fact, participation in other 
discourses that share linguistic resources with mathematics informs one’s mathematical thinking. 
And vice-versa; participation in mathematics informs one’s thinking and action in other discourses 
that share linguistic resources.  

Thus we argue that mathematics teachers (with the support of mathematics education 
researchers) would be well-served to develop further understanding of how the characteristically 
mathematical expressions appear in students’ discourses outside the classroom. Such insight would 
inform the ideas about mathematics the students would have when hearing and using the expressions 
in mathematics. For instance, two of the students in the focus interaction in this paper were “gamers.” 
We are not very familiar with gamer culture, but we know that participants are in constant interaction 
with each other, and they are confronted with a continuous and fast-paced stream of choices that 
impact their progress in the game. Thus the students in our focus interaction would be using the “If 
… then …would …” construction in their gaming just as they used it in their mathematics. And we 
wonder how these two environments connect to each other for these students. 



Teaching and Classroom Practice 1172 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

Acknowledgement 
This research was supported by the Social Sciences and Humanities Research Council of Canada, 

as part of a grant entitled “Students’ language repertoires for investigating mathematics” (Principal 
Investigator: David Wagner). 

References 
Andersson, A. (2011). A “curling teacher” in mathematics education: Teacher identities and pedagogy development. 

Mathematics Education Research Journal, 23(4), 437-454. 
Foucault, M. (1982). The subject and power. Critical inquiry, 8(4) 777-795. 
Herbel-Eisenmann, B. A., Wagner, D., Johnson, K. R., Suh, H., & Figueras, H. (2015). Positioning in mathematics 

education: revelations on an imported theory. Educational Studies in Mathematics, 89(2), 185-204. 
van Langenhove, L. & Harré, R. (1999). Introducing positioning theory. In R. Harré & L. van Lagenhove (Eds.), 

Positioning theory: Moral contexts of intentional action (pp. 14-31). Blackwell: Oxford. 
Wagner, D., & Herbel-Eisenmann, B. (2009). Re-mythologizing mathematics through attention to classroom 

positioning. Educational Studies in Mathematics, 72(1), 1-15.  
Wagner, D., & Herbel-Eisenmann, B. (2014). Identifying authority structures in mathematics classroom discourse: a 

case of a teacher’s early experience in a new context. ZDM: The International Journal of Mathematics 
Education, 46(6), 871-882. 

  


